Udostępnij Udostępnij Udostępnij Udostępnij Print

Pomiary mocy silnika elektrycznego

-- czwartek, 25 maj 2017

Zapewnienie lepszej wydajności dzięki zrozumieniu podstaw technicznych i fizycznych

Za zużycie energii elektrycznej w produkcji odpowiedzialne są w znaczącej mierze silniki elektryczne. Aby upewnić się, że pracują one optymalnie, niezbędne są precyzyjne pomiary mocy poszczególnych maszyn.

Precyzyjne pomiary parametrów roboczych urządzeń to zawsze pierwszy krok do uzyskania lepszych osiągów. Mogą one również pomóc wydłużyć trwałość silników elektrycznych. Niewielkie przemieszczenie mechaniczne, a także inne usterki, są często niewidoczne gołym okiem, podczas gdy najmniejsza mimoosiowość wału może negatywnie wpływać na wydajność i jakość pracy silnika, a nawet skracać okres jego żywotności.

Podstawowe pomiary mocy elektrycznej

Silniki elektryczne to maszyny elektromechaniczne zamieniające energię elektryczną na pracę mechaniczną. Mimo różnic w rozmiarze i typie wszystkie takie urządzenia pracują na tej samej zasadzie: prąd elektryczny przepływa przez uzwojenie w polu magnetycznym i wytwarza siłę, która obraca uzwojeniem, tworząc moment obrotowy.

Co to jest moc i jakie jest znaczenie tego parametru? Podstawowa fizyczna definicja mocy to stosunek pracy wykonanej w określonym czasie do tego czasu. W silniku elektrycznym moc wytwarzana jest poprzez zamianę energii elektrycznej, według opisanych dalej praw fizyki.

W układach elektrycznych napięcie jest miarą siły potrzebnej do wprawienia elektronów w ruch. Natężenie jest miarą przepływu ładunku na sekundę przez materiał, do którego dane napięcie jest przyłożone. Iloczyn napięcia i natężenia nazywany jest mocą elektryczną.

 

gdzie moc (P) podana jest w watach, napięcie (U) w voltach [V], a natężenie (I) w amperach [A].

Wat [W] to jednostka mocy równa jednemu dżulowi na sekundę. Dla źródła prądu stałego obliczenie mocy to po prostu iloczyn napięcia i natężenia: W = U · A. Jednakże określenie mocy w przypadku źródła prądu przemiennego musi uwzględniać współczynnik mocy (z ang. PF – Power Factor).

Współczynnik mocy jest parametrem bezwymiarowym, przyjmującym wartość od 1 do 1. Opisuje on ilość dostarczanej mocy czynnej. Dla współczynników PF mniejszych od jedności, co niemal zawsze jest spełnione, występują straty mocy. Dzieje się tak, ponieważ napięcie i natężenie obwodu prądu przemiennego mają z natury przebiegi sinusoidalne, z ciągle zmieniającą się wartością napięcia i natężenia, zwykle z pewnym przesunięciem fazowym.

Ponieważ moc to iloczyn napięcia i natężenia (P = U · I), moc jest najwyższa, gdy przebiegi natężenia i napięcia są zgodne w fazie, tj. ich punkty charakterystyczne, takie jak minima i maksima, pokrywają się ze sobą. Zjawisko to zachodzi w przypadku prostego obciążenia rezystancyjnego. W tej sytuacji oba przebiegi są zgodne w fazie i współczynnik mocy wynosi 1. Jest to rzadka sytuacja, ponieważ niemal wszystkie rodzaje obciążeń nie są czysto rezystancyjne.

Dwa przebiegi są rozbieżne w fazie lub przesunięte fazowo, gdy oba sygnały się nie pokrywają. Może to być spowodowane indukcyjnością lub nieliniowością obciążenia. W tej sytuacji współczynnik mocy będzie mniejszy od 1, a moc układu będzie mniejsza.

Ze względu na możliwe fluktuacje napięcia i natężenia w obwodach prądu przemiennego moc mierzy się na kilka różnych sposobów.

Moc rzeczywista jest realną wartością mocy wydzielanej w obwodzie i jest określana w watach. Cyfrowe analizatory mocy wykorzystują technologię do próbkowania napięcia i natężenia, a następnie obliczania wartości mocy rzeczywistej według wzoru:

W tym przypadku wartość chwilowa napięcia jest mnożona przez chwilowe natężenie (I), a następnie całkowana po określonym przedziale czasu (t). Takie obliczenie mocy rzeczywistej będzie poprawne dla każdego rodzaju przebiegu, niezależnie od wartości współczynnika mocy.

Do obliczania mocy rzeczywistej i mocy skutecznej stosuje się równania:


W rzeczywistych układach i sieciach zasilania, ze względu na nieliniowości charakterystyk urządzeń, w liniach zasilających pojawiają się tzw. częstotliwości harmoniczne. Harmoniczne takie tworzą dodatkową komplikację. Nawet pomimo tego, że sieć energetyczna zwykle działa z częstotliwością 50 Hz, istnieje w niej wiele innych częstotliwości i harmonicznych, potencjalnie występujących w obwodzie. Mogą także pojawiać się prądy stałe lub składowe prądu stałego. Moc ogólna jest obliczana z uwzględnieniem wszystkich tych składowych, włącznie z harmonicznymi.

Opisana metoda obliczania jest wykorzystywana do określenia mocy rzeczywistej i wartości skutecznej prądu dla każdego rodzaju przebiegu, włącznie z harmonicznymi, jakie tylko przyrząd jest w stanie zarejestrować, ze względu na swój zakres pomiarowy.


Przeczytaj także

Czy roboty mogą być zagrożeniem dla pracowników?
Ponad 50 podatności w oprogramowaniu robotów wykorzystywanych przy pracy z ludźmi może prowadzić do fizycznego zagrożenia życia i zdrowia, a najprostszy atak możliwy jest dzięki wykorzystaniu... więcej »
Układy sterowania oparte na komputerach PC: rozbudowa architektur układów sterowania w fabrykach - od sieci brzegowych do platformy IIoT
Urządzenia brzegowe sieci ułatwiają przetwarzanie danych na poziomie fabryki, zwiększając bezpieczeństwo komunikacji i możliwości wykorzystania standardów Przemysłowego Internetu Rzeczy... więcej »
Chiny liderem automatyzacji? Państwo Środka pobiło kolejny rekord
Chiny w błyskawicznym tempie stały się globalnym liderem automatyzacji. Nad Żółtą Rzeką kupuje się dziś najwięcej na świecie robotów industrialnych. Na tym jednak nie kończy się apetyt Państwa... więcej »
mapp Crane - zaawansowana kontrola rotacji
Nowy pakiet kompensuje niepożądane kołysanie i zapobiega rotacji ładunku.  B&R wprowadza nową funkcję dla sterowania dźwigami – komponent mapp Crane. Suwnice, które przenoszą podwieszane... więcej »
Raport: Prawidłowa praca maszyn - Zasilacze i systemy bezpieczeństwa gwarantowanego
Zakłócenia w pracy maszyn i urządzeń spowodowane przerwami w zasilaniu lub niedostateczną jakością energii są zawsze zjawiskiem niepożądanym, grożącym bardzo poważnymi konsekwencjami.... więcej »
Przemysł 4.0 optymalizuje bezpieczeństwo pracy
Działania związane z realizacją koncepcji Przemysłu 4.0 obejmują poza technologiami także interakcje z ludźmi i bezpieczeństwo pracy, jak wyjaśnił przedstawiciel firmy Bosch Rexroth w artykule... więcej »
 
Aktualne wydanie

Zobacz także

  •   Wydarzenia  
  •   Katalog  

Wydarzenia

Konferencja Automotive
2017-09-05 - 2017-09-06
Miejsce: Kraków
PROCESS AUTOMATION
2017-09-07 - 2017-09-08
Miejsce: Kraków
ENERGETAB 2017
2017-09-12 - 2017-09-14
Miejsce: Bielsko Biała
Robotech Robotics Technology Conference
2017-09-19 - 2017-09-19
Miejsce: Wrocław
Europejski Kongres Lean Manufacturing
2017-09-28 - 2017-09-29
Miejsce: Katowice
Targi 4INSULATION
2017-10-11 - 2017-10-12
Miejsce: Kraków

Katalog

ASTOR Sp. z o.o.
ASTOR Sp. z o.o.
Smoleńsk 29
31-112 Kraków
tel. 12 428 63 00

ABB Sp. z o.o.
ABB Sp. z o.o.
Żegańska 1
04-713 Warszawa
tel. 32 79 09 222

Comau Poland Sp. z o.o.
Comau Poland Sp. z o.o.
Turyńska 100
43-100 Tychy
tel. +48 502 185 687

zobacz wszystkie




SONDA


tak
nie
nie wiem


Wydania specjalne


Profesjonalne Tłumaczenia Techniczne
O wydawnictwie   |   Reklama   |   Mapa strony   |   Kontakt   |   Darmowa prenumerata   |   RSS   |   Partnerzy   |   
Copyright © 2003-2017 Trade Media International
zobacz nasze pozostałe strony
Trade Media International Inżynieria & Utrzymanie Ruchu Control Engineering Polska MSI Polska Inteligentny Budynek Design News Polska Almanach Produkcji w Polsce